Autonomous design and fabrication for long term space exploration

Hod Lipson

Cornell University

Mechanical And Aerospace Engineering

Computing and Information Science

Exploration cycle is too long

- Years to design and fabricate a robot
- Long one-way trip
- Several cycles necessary
- Not every cycle successful
- Can't do them concurrently
- A decade or two for distant planets

How can we shorten the cycle time? Most approaches have focused on faster travel

The StarTrek "replicator" approach Phase I

- Send over a replicator (Once, all planets)
- Beam over a general probing robot
- Sense the environment, send info back
- Redesign, beam over the next, more specific robot, etc.
- Recycle robots and extend the replicator
- Design & test cycle reduced from decades to months

The StarTrek "replicator" approach Phase II

- Close the loop by local autonomous design
- Humans control high level requirements
- Design & test cycles performed locally
- Recycle robots and extend the replicator
- Design cycle reduced even further

Components of a system

- Design space
 - Founding building blocks
 - Rules
 - Feedback mechanisms
- Physics
 - Simulator
 - Real testing
- Open ended design automation
 - Self organizing systems like evolution
- Extremely flexible fabrication system
 - Layered manufacturing

The Design Space Linear Synapse Linear Synapse Linear Synapse Plane Plane Plane robot := <vertices><bars><neurons><actuators> vertex := <x,y,z> bar := <vertex1 index, vertex2 index, relaxed length, stiffness> neuron := <threshold, synapse coefficients of connections to all neurons> actuator := <bar index, neuron index, bar range>

Evolving for Locomotion

- **Population**: Starts with empty/null designs. Size 200 ~ 1000 machines
- **Genotype/phenotype:** bars/actuators, and neurons
- Fitness function: distance center of mass moved during 12 cycles of the neural net
- **Selection function**: fitness proportionate, rank, random
- **Genetic operators**: small mutations:
 - Connect/remove small bar or unconnected neuron
 - Change bar length or neuron synapse
 - Split bar/vertex
 - Connect/disconnect neuron to bar (actuator)
- Replacement function: random, crowding, elitism.
- Evolution dynamics: Steady state 100 ~ 10000 generations. Various dynamics of convergence and divergence. Parallel implementation yields "natural evolution" drive for simplicity:

Reaching higher complexities

- Open-ended design problem exponentially intractable with low-level mutation-selection processes
- Need mechanisms that discover and use
 - Modularity
 - Regularity
 - Hierarchy
 - Abstraction

More complex machines

Evolving L-Systems To Generate Virtual Creatures

More complex machines

- Genotypes that encode a model for a developmental process
- DNA, Graph growing, L-Systems*

*With Greg Hornby, Brandeis CS

Research questions and Technological Challenges

- Flexible and fully autonomous fabrication
 - Multi functional 3D printing
 - Self-extension (self-replication?)
 - Recycling, then,
 - Using local energy/material resources
- · Open ended and fully autonomous design
 - Reaching higher complexities
 - Physical feedback cycle

Autonomous design and fabrication for long term space exploration

Lipson and Pollack (2000), Nature 406

